Part 9 - Double and triple integrals

Posted on Sep 15, 2023
(Last updated: May 26, 2024)

Introduction

In this part we’ll cover how we integrate functions of several variables, specifically, over a rectangular domain. We’ll later cover general domains.

For now, let’s stick to rectangles and rectangular boxes.

Let’s define our approach.

Double integrals

Say we have a function, $f(x, y)$ with rectangular domain, $R = [a, b] \cdot [c, d]$.

In mathematical terms: $\{(x, y) | a \leq x \leq b, c \leq y \leq y \}$.

Let’s now imagine we divide, $[a, b]$ into $n$ subintervals, of width $\Delta x = \dfrac{b - a}{n}$.

Divide $[c, d]$ into $m$ subintervals, of width $\Delta y = \dfrac{d - c}{m}$.

Now our rectangle is divided into $nm$ subrectangles, let’s call them, $R_{ij}$, with area, $\Delta A = \Delta x \Delta y$.

In each $R_{ij}$, let’s choose a point denoted as, $(x_{i}^{*}, y_{j}^{*})$.

If we sum up these rectangles: $$ \sum_{j = 1}^{m} \sum_{i = 1}^{n} f(x_{i}^{*}, y_{j}^{*}) \Delta A $$

We get something that reminds us of the volume under the graph, taking the limit of these we get: $$ \lim_{\substack{m \to \infty \newline n \to \infty}} \sum_{j = 1}^{m} \sum_{i = 1}^{n} f(x_{i}^{*}, y_{j}^{*}) \Delta A $$

We get the exact volume under the graph (above the rectangle).

Usually, we write this as: $$ \lim_{\substack{\Delta x \to 0 \newline \Delta y \to 0}} \sum_{j = 1}^{m} \sum_{i = 1}^{n} f(x_{i}^{*}, y_{j}^{*}) \Delta A $$

This is the definition of the double integral!

Definition

The double integral of the function, $f$, on a rectangle, $R$, is: $$ \iint_{R} f(x, y)\ dA = \lim_{\substack{\Delta x \to 0 \newline \Delta y \to 0}} \sum_{j = 1}^{m} \sum_{i = 1}^{n} f(x_{i}^{*}, y_{j}^{*}) \Delta A $$

Assuming this limit exists, This limit exists for any continuous function.

Notation

We will use this notation: $$ \iint_{R} f(x, y)\ dA $$

But we can also write: $$ \iint_{R} f(x, y)\ dx\ dy $$

Geometrical sense

$f(x_{i}^{*}, y_{j}^{*}) \Delta A =$ volume of rectangular tube

Therefore: $$ \lim_{\substack{\Delta x \to 0 \newline \Delta y \to 0}} \sum_{j = 1}^{m} \sum_{i = 1}^{n} f(x_{i}^{*}, y_{j}^{*}) \Delta A \approx \text{ volume under the graph} $$

Which just means: $$ \iint_{R} f(x, y)\ dA = \text{ volume under the graph, above } R $$

General case - functions of three or more variables

The definition is similar, let’s define the triple integral.

Assume that the domain is a rectangular box, $I = [a, b] \cdot [c, d] \cdot [e, f]$

We use the same approach, divide into $n, m, l$ sub-interval, the volume of one of these sub-boxes will be: $$ f(x_{i}^{*}, y_{j}^{*}, z_{k}^{*}) \Delta V $$

Summing these: $$ \sum_{k = 1}^{l} \sum_{j = 1}^{m} \sum_{i = 1}^{n} f(x_{i}^{*}, y_{j}^{*}, z_{k}^{*}) \Delta V $$

Taking the limit: $$ \lim_{\substack{\Delta x \to 0 \newline \Delta y \to 0 \newline \Delta z \to 0}} \sum_{k = 1}^{l} \sum_{j = 1}^{m} \sum_{i = 1}^{n} f(x_{i}^{*}, y_{j}^{*}, z_{k}^{*}) \Delta V $$

Using integral notation: $$ \iiint_{I} f(x, y, z)\ dV $$

How to compute double and triple integrals

Recall how we compute integrals for functions of one variable, specifically recall the fundamental theorem of calculus: $$ \int_a^b f(x)\ dx = F(b) - F(a) $$

Where $F(x)$ is the antiderivative/primitive function.

If we can boil it down to an integral of one variable we can use this, this is what we call iterated integrals.

Iterated integrals

Assume we have a function, $f$, on $R = [a, b] \cdot [c, d]$.

Fix $y$, meaning, assume $y$ is a constant.

Therefore: $$ \int f(x, y)\ dx $$

is a function that will depend on $y$, the value we get out from this, is only dependant on $y$. Therefore: $$ \int_c^d \left(\int_a^b f(x, y)\ dx \right) dy $$

We usually just write this as: $$ \int_c^d \int_a^b f(x, y)\ dx\ dy $$

This is what we call for iterated integrals. We can also do the other way around! $$ \int_a^b \int_c^d f(x, y)\ dy\ dx $$

Notice how our $dx$ and $dy$ are now swapped, this order indicates what order we are integrating.

But does these functions yield the same integral?

Fubini’s Theorem

Fubini’s Theorem says that:

Let, $f$, be continuous function on rectangle, $R = [a, b] \cdot [c, d]$. Then: $$ \iint_R f(x, y) dA = \int_c^d \int_a^b f(x, y) dx\ dy = \int_a^b \int_c^d f(x, y) dy\ dx $$

Example

Find $\iint_R (x - 3y^2) dA$, where $R = [0, 2] \cdot [1, 2]$.

Using Fubini: $$ \int_1^2 \int_0^2 (x - 3y^2) dx\ dy $$

$$ \int_1^2 \left(\dfrac{x^2}{2} -3xy^2\right) \bigg\rvert_{x = 0}^{x = 2}\ dy $$

$$ \int_1^2 (2 - 6y^2) dy $$

$$ (2y - 2y^3) \bigg\rvert_{y = 1}^{y = 2} $$

$$ (4 - 16) - (2 - 2) = \boxed{-12} $$

Let’s do the integral the otherway around as well! $$ \int_0^2 \int_1^2 (x - 3y^2) dy\ dx $$

$$ \int_0^2 \left(xy - y^3\right) \bigg\rvert_{y = 1}^{y = 2}\ dx $$

$$ \int_0^2 (x - 7) dx $$

$$ (\dfrac{x^2}{2} - 7x) \bigg\rvert_{x = 0}^{x = 2} $$

$$ (2 - 14) - 0 = \boxed{-12} $$

Same answer!

Let’s do a triple integral now!

Example

Find $\iiint_R xz \cdot e^{xy}\ dV$ on the rectangle, $R = [0, 1] \cdot [0, 1] \cdot [0, 1] = [0, 1]^3$.

According to Fubini’s Theorem, we can choose any order when computing iterated integrals. If we do a quick analysis, we find that integrating with respect to $z$ first is a good idea.

$$ \int_0^1 \int_0^1 \int_0^1 xz \cdot e^{xy}\ dz\ dx\ dy $$

$$ \int_0^1 \int_0^1 \dfrac{z^2 x e^{xy}}{2} \bigg\rvert_{z = 0}^{z = 1} dx\ dy $$

Let’s integrate with respect to $y$, to make it easier. $$ \int_0^1 \int_0^1 \dfrac{x e^{xy}}{2} dx\ dy $$

$$ \int_0^1 \dfrac{e^{xy}}{2} \bigg\rvert_{y = 0}^{y = 1}\ dx $$

$$ \int_0^1 \dfrac{e^x}{2} - \dfrac{1}{2}\ dx $$

$$ \dfrac{e^x}{2} - \dfrac{x}{2} \bigg\rvert_{x = 0}^{x = 1} $$

$$ \left(\dfrac{e^x}{2} - \dfrac{1}{2}\right) - \left(\dfrac{1}{2} - 0\right) = \boxed{\dfrac{e}{2} - 1} $$

Let’s do one last example.

Example

Find $\iint_R y \cdot sin(xy)\ dA$ on the rectangle, $R = [1, 2] \cdot [0, \pi]$.

Let’s integrate with respect to $x$, firstly, it’s much easier. $$ \int_0^{\pi} \int_1^2 y \cdot sin(xy)\ dx\ dy $$

$$ -\int_0^{\pi} cos(xy) \bigg\rvert_{x = 1}^{x = 2}\ dy $$

$$ -\int_0^{\pi} cos(2y) - cos(y) \ dy $$

$$ -\left( \dfrac{sin(2y)}{2} - sin(y)\right) \bigg\rvert_{y = 0}^{y = \pi} = \ldots = \boxed{0} $$